

Neue Katalysatorkonzepte für Brennstoffzellen

Prof. Christina Roth, Freie Universität Berlin christina.roth@fu-berlin.de

Forschungsaktivitäten der AG Roth

Nano: Neue Materialien

- Alternative Katalysatorträger (Oxide, Polymere)
- Neue (templatierte, dotierte) Kohlenstoffmaterialien (in coll)
- Form-selektierte Edelmetall-Nanopartikel

Mikro: Funktionelles Elektrodendesign

- 1D Materialien und Elektrodenstrukturierung
- 3D Elektrodenarchitekturen über Elektrospinning

In-situ: Material-Charakterisierung

- Design der in-situ Probenumgebung
- Untersuchung von Brennstoffzellen und Batterien
 im Betrieb, z. B. mittels Röntgenabsorptionsspektroskopie

Berlin

Freie Universität

Katalysatoren müssen billiger und stabiler werden!

40 Gew.% Pt auf Ruß

Aber:

Im Unterschied zur heterogenen Katalyse spielt die Zugänglichkeit große Rolle, d.h. nur die Edelmetallbeladung zu reduzieren, reicht nicht aus!

Platin muss kontrolliert in der 3-Phasengrenze "deponiert" werden.

Problematisch: Degradationsphänomene

Kohlenstoffkorrosion

Partikelagglomeration Kollaps der 3D-Elektrodenstruktur

erhebliche Massentransportlimitierung

Pt-Auflösung

Partikelkoaleszenz

Verlust aktiver Pt-Oberfläche

Ausscheidungsband in Membran

Kohlenstoffkorrosion führt zum Kollaps der Elektrodenstruktur!

Ettingshausen, Roth et al., Fuel Cells 11 (2011) 238.

Neue Katalysatorkonzepte

NEU:

- Nutzung von elektronen-leitenden Oxid- und Polymerträgern (Link zu heterogener Katalyse und Lithiumionen-Batterien)
- höhere Stabilität
- <u>aber:</u> Elektronenleitfähigkeit, Prozessierbarkeit poröser Schichten,...???
- Chemischer Aspekt: Nanopartikel-Träger-Wechselwirkung
 Untersuchung mit in-situ spektroskopischen Methoden (XAS und DRIFTS)
- Materialwissenschaftlicher Aspekt: 3D-Elektrodenstrukturierung
 Realisierung u. a. über Elektrospinning-Technologie

Neue Katalysatorkonzepte

Chemischer Aspekt: Nanopartikel-Träger-Wechselwirkung

Nanopartikel-Träger Ww

Oxide als alternative Trägermaterialien Freie Universität

Pt/C

- 20 wt.% Pt/C
- Vulcan XC-72
- 2-3 nm Pt

Pt/SnO₂

- 20 wt.% Pt/SnO₂
- SnO_2
- 2-3 nm Pt

Pt/ITO

- 20 wt.% Pt/ITO
- 90 % In₂O₃, 10% SnO₂
- 3-5 nm Pt

Pt/ATO

- 20 wt.% Pt/ATO
- 7-11 % Sb₂O₅, 89-93% SnO₂
- 5-6 nm Pt

CO-Adsorption und Stripping in elektrochemischer Halbzelle

In-situ XAS-DRIFTS cell

Untersuchung der CO-Bindungsgeometrie (idealerweise im Betrieb)

- basiert auf einem Design von Prof. A. Drochner (TUD
- Analyse von Pulverschüttungen
- Identische Bedingungen für Probe und Referenz
- IR <u>↓</u> X-ray
- flexible (durchstrahlbare) Probendicke

DRIFTS-Experiment

CO-Bindungsmotive

Nanopartikel-Träger Ww

CO-Adsorption und "therm. Stripping" in DRIFTS-Zelle: Bindungsgeometrien

XAS-Experiment

Nanopartikel-Träger Ww

CO-Adsorption in elektrochem. Halbzelle und in-situ XAS: Elektrochem. Umgebung

Nanopartikel-Träger Ww

- Je nach Trägermaterial können unterschiedliche Adsorbate beobachtet werden.
- Die Vergiftung mit CO ist für oxid-geträgerte Pt-Partikel geringer.
- <u>Bindungsgeometrien</u>: müssen noch genauer untersucht und simuliert werden.
- Momentan: erste simultane Messung

Neue Katalysatorkonzepte

Materialwissenschaftlicher Aspekt: 3D-Elektrodenstrukturierung

Elektrodenstruktur: konv. Material

Für die Elektrodenstruktur ist die Trägermorphologie von entscheidender Bedeutung.

Struktur der porösen PEMFC Elektrode, Falschfarbenbild eines Ultradünnschnitts im TEM

Elektrodenstruktur: Hohlkugeln

Collaboration: H. Hahn, J. Suffner, INT, KIT

Ettingshausen et al., Advanced Energy Materials (2011) DOI: 10.1002/aenm.201100077.

Elektrodenstruktur: Hohlkugeln

Sehr dichte Struktur

Hohe Porosität

Geringe Zellleistung der Pt/ATO_{Aldrich} MEA wegen hoher Massentransportverluste

Ettingshausen et al., Advanced Energy Materials (2011) DOI: 10.1002/aenm.201100077.

Elektrodenstruktur: Hohlkugeln

Ettingshausen et al., Advanced Energy Materials (2011) DOI: 10.1002/aenm.201100077.

Methoden zur Elektrodenpräparation: Airbrush (Standard) Elektrospinning (NEU) Elektolyt Elektrolyt Elektrolyt **Keywords:** Elektrolyt Carbon Interkalationsmaterial - Massentransport - Diffusionswege Binder - Zugänglichkeit

- Porosität

Zils et al., *Fuel Cells* 10 (2010) 966.

Pt/e-CNF zeigen eine elektrochemische Oberfläche von 60.1 m² g⁻¹ verglichen mit 52.9 m²g⁻¹ für den kommerziellen Katalysator 20 wt.% Pt/C.

Das ORR-Onsetpotential liegt mit 0.84 V identisch zum kommerziellen Katalysator.

Erste Brennstoffzellentests mit geringer Beladung (0.1 mg_{Pt} cm⁻²) der Pt/eCNF zeigten 91 mA cm⁻² bei 0.6V. **Optimierung nötig!**

Zusammenfassung und Ausblick

- Oxide sind als Trägermaterialien für die Elektrokatalyse neu.
- Es zeigen sich interessante träger-abhängige Effekte (NP-Träger Ww).
- Einbindung in eine poröse Elektrode erweist sich als schwierig.

Spielwiese für neue Methoden, wie z. B. Elektrospinning.

Zukünftig:

von Erfahrung aus heterogener Katalyse durch stärkere Interaktion profitieren!

Vielen Dank !!! Den Geldgebern BMBF, BMWi, DFG, DAAD und ANKA

